Editor's Choice


Robot with air-water actuators has fluid motion

Fourth Quarter 2019 Editor's Choice Robotics & Mechatronics

Hydraulics and pneumatics are widely used for power transmission: hydraulics for moving heavy loads with highly controlled motion, and pneumatics for lighter loads and rapid, repetitive motions. Many machines use hydraulic and pneumatic systems with electromechanics, and pneumatic or pneumatic systems integrated with electromechanical drives are now common. But it is very rare to see hydraulic and pneumatic systems working in an integrated system.

In a complete break from tradition, a Disney Research team at Northeastern University’s College of Mechanical and Industrial Engineering in Boston has come up with a beautifully engineered hybrid hydraulic-pneumatic system that can create amazingly lifelike motions without losing precise force control. In its latest development, Disney Research built a human-safe, humanoid robot called Jimmy, consisting of an upper torso with two arms and a head carrying stereo cameras. Each arm has four degrees of motion.

Very fluid motion

The system has a series of rolling-diaphragm cylinders that use hydraulic power to move in one direction and compressed air to move in the other. Two single-acting cylinders are paired to form a single rotary actuator. The actuator weighs only 120 grams, and can deliver up to 4,5 Nm of continuous torque with a 135° angle of motion. Essentially, force from the air cylinder creates a preload against the hydraulic cylinder. The compressed air in the one cylinder provides the return force that would otherwise be provided by a spring. Each cylinder then requires only one hydraulic line and one pneumatic line.

The result is a system that the team describes as light, fast, and dexterous, with low friction and no backlash. Assistant professor, John Whitney says the device has greater torque density than highly geared servos or brushless motors coupled with harmonic drives. It is also compliant and backdrivable, making it intrinsically safe, and thus ideal for human-robot interaction applications. Another advantage of this kind of actuation system is that, unlike motors or servos, you don’t have to place the entire system inside your robot’s limbs, so you can make them smaller and lighter.

While humanoid robots can be painfully slow, Jimmy moves with lifelike speed and grace and is capable of waving at people, doing a little dance and drumming on a table. Jimmy can also safely operate in contact with people and can play patty-cake with a kid and even pat her cheeks, something you don’t see very often in human-robot interaction experiments. Whitney says that when people meet Jimmy for the first time, most feel a strong emotional connection with the robot.

Mimicking human movement

An operator manipulates the arms of a remote controller, and the robot follows the moves precisely in real time using a virtual-reality headset for visual input from the robot’s stereo cameras. To make Jimmy’s arms move, the operator uses a replica of the robot as a controller. The replica is coupled to the actual robot through a series of air and water transmission lines, which transfer forces from one side to the other. Not only can the operator move Jimmy’s arms but it is also possible to haptically feel when the robot’s arms touch things or get pushed.

The stereo camera on Jimmy’s head streams video to the head-mounted display worn by the operator, who can then see through the robot’s eyes, and dual-axis motion of its head follows the movements of the operator’s head via electric servos. Eventually, a control system and a set of motors could be used to make Jimmy’s movements fully autonomous.

This low-impedance hydraulic system can give haptic feedback for precise control in delicate tasks such as picking up a raw egg or even threading a needle. It consistently transmits contact forces to the operator while generating a high-fidelity remote sense of touch using haptic feedback.

Whitney says the transmission provides Jimmy with incredibly smooth and fast motion, while also allowing life-like interaction with people and the handling of delicate objects. Although for now, the robot is remotely controlled by a human operator, the team expects the same level of mechanical performance once the motions are automated.

“There is huge potential in the personal robots space. The haptic benefits to a human operator are equally valuable for autonomous control,” Whitney says. “Also, the backdrivable and lightweight properties of the transmission are great features to have when you adopt manipulation and ambulation strategies that leverage rather than avoid contact with the environment.”




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...