Editor's Choice


The Bloodhound

Fourth Quarter 2019 Editor's Choice News & events

The Bloodhound project is back on track. The British team developing a car capable of reaching 1600 kmph is in South Africa for several weeks of high-speed testing on the dry desert track at Hakskeenpan in the Northern Cape. This is key to preparing for an attempt at a new 1200+ kmph land speed record next year. By the end of 2019, Bloodhound aims to demonstrate speeds above 800 kmph. The next step is to break the existing world land speed record of 1228 kmph.

The Bloodhound is powered by a rocket bolted to a Eurofighter-Typhoon jet engine. Commander Andy Green, who is to doing the driving, says that the team is fitting high-speed metal wheels, brake parachutes, pressure sensors and wheel fairings ready for speeds well in excess of 800 kmph in order to test the aerodynamics.

The first thing to test is the high speed desert wheels. Each weighs 95 kg and is forged from solid aluminium. At 1600 kmph, a wheel experiences 50 000 times the force of gravity tearing the rim apart, so it has to be solid metal; nothing else will cope with the extreme loads.

We don’t know how these wheels will behave on the desert surface. Metal rims running on the hard mud surface of Hakskeenpan will have very little grip due to friction,” he explains. “Normal cars rely on tyre grip for their stability and safety but 50 000 g would destroy any rubber tyre, so we are working with the unusual and poorly understood dynamics of solid metal wheels. We have given them some lateral grip on the desert surface by making them with a shallow V profile.”

As the car runs along the track, the wheels cut ruts in the mud surface, providing the sideways grip needed. Unfortunately, the faster the car goes, the shallower the ruts become. At supersonic speeds the wheels will be making tracks less than 5 mm deep, which will provide almost no sideways grip. However, as the aerodynamic grip will be huge, the car will get its directional stability from the supersonic airflow. This should give it some very lively steering at high speeds, with the front wheels acting like rudders in the supersonic airflow, producing very rapid steering responses.

The bad news is that as the car accelerates, the mechanical wheel grip goes down quickly, but the aerodynamic forces (which depend on the square of the speed) build up more slowly. This means that at medium speeds between 500 and 800 kmph there is very little surface grip from the wheels and very little aerodynamic response. “Just to make things more complicated, we also need to assess the lateral stability as we increase the speed, so I need to control the car and try to measure its stability, all at the same time. Luckily, I love a challenge,” he says.

Another key thing is how to stop the car from high speeds. “We’re using airbrakes and two separate brake parachutes, any one of which can stop the car by itself, to give us plenty of fail-safe. Going faster is optional, but slowing down is compulsory, so we have to get this right every time,” he adds. “At the maximum deployment speed of around 1100 kmph, the chute will produce a drag force of 9 tons, with an opening shock load 12 or 13 tons. This is a very rapid and violent process, which is why it is vital to test the whole system this year, before we go supersonic next year.”

The airbrakes are a more civilised way of slowing down. Large perforated panels open up on either side of the bodywork towards the rear of the car, gradually increasing the drag in a way that doesn’t try to tear the driver’s eyeballs out. The downside is that the airbrakes will produce a huge amount of turbulence and vibration at the back of the car, which needs to be measured to make sure it won’t break anything.

The next key area is the aerodynamics. This is such a complex subject that the detailed measurements still have to be done by building parts and testing them. This year’s testing will validate the computer modelling and yield very accurate drag figures. To help with this process, there are 200 pressure sensors fitted to the car to confirm the exact pressures across the bodywork, with and without the airbrakes. This is key to making sure the right size of rocket is fitted next year when Bloodhound takes aim at 800 kmph and beyond.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...