Electrical switching & drive systems & components


Managing wear and friction in mini motors

Second Quarter 2023 Electrical switching & drive systems & components

Understanding the impact of friction and wear on a mini motor, as well as the factors that cause them, is a key specification requirement. Technically known as the study of tribology, the effects are always specific to the individual application, and combatting them is critical for durability and long lifetime running. Specifying a mini motor to an application’s tribological requirements will optimise performance long-term and minimise replacement and maintenance costs for the end user.

As miniaturised electrical motor designs include components that physically interact during motion, including brushes and bearings, the impact of friction and wear are key considerations for their specification. Components subject to these types of mechanical stresses typically fail first, meaning that the motor’s lifespan and long-term performance are dependent on these tribological design factors. As the level of friction and wear differs for every application, it is crucial to understand the specific tribology requirements in order to specify the most effective and economical mini motor design.

Electrical brushes

High-speed mini motors involve brushed or brushless technology. DC brush motor designs use armatures that rotate against static brushes to make the electrical connections. The brushes are always used under electrical and mechanical stress, and as a result they wear over time. Brush wear is proportional to the applied spring force and sliding speed. Wear is caused by starting current, continuous current and voltage drop across commutation − the process of conversion of electrical current. High running speeds, typical to many mini motor applications, will also increase the rate of wear. At high speed, the sliding electrical contact can cause mechanical losses, unstable electrical contact and arcing, leading to surface wear. Environmental factors, including temperature and humidity, will also have an effect.

To combat these factors, the construction material and collector coating are key considerations. For example, in high-torque applications, carbon brushes provide increased resistance for longer lasting performance and lifetime. Lubrication types and practices are also important, and to reduce friction, special electrical greases should be used, particularly for high-speed applications.

While brushes wear over time, producing dust and requiring periodic maintenance and replacement, they can be a more cost-effective motor choice. Brush DC motors have a high torque to inertia ratio, and as they require few external components, this reduces potential points of wear and failure. Thus they can be ideal for use in rugged conditions.

Brushless DC motors

Alternatively, brushless DC (BLDC) motor designs remove the challenge of wear. Instead of a brush and mechanical commutator, the motor’s permanent magnet is mounted on the rotor, and motion is generated by the stator’s energising coils. Meanwhile, commutation is performed by an external controller and position sensor. The brushless design means a longer-life motor, with no maintenance requirements, providing high reliability. A BLDC motor can achieve very high speed, and as a result of its commutation sensors, enables precise control and speed regulation. Superior control however requires additional components and complexity, typically making a BLDC motor more expensive than its brush DC counterpart.

Bearings

While BLDC motors are advantageous with regard to physical wear, like brushed DC motors their design still depends on bearings. As a motor’s bearing assembly reduces friction between the rotating shaft and the stationary flange, the bearings themselves absorb wear. As a result, they deteriorate over time. Bearing selection to optimise motor performance and lifetime requires detailed understanding of load pattern and system level deflection. Clearances between the rolling element and possible misalignments caused by loads and fluctuating temperature must also be taken into account.

Optimal lubrication selection maintains performance and enhances lifetime, with different levels of time-dependent thinning used in bearing configurations. Ultimately, hydrodynamic lubricant film selection depends on the balance of factors, including material compatibility, dew point, viscosity parameters, environment and service temperature.

As a result of these factors, bearing design and material selection will ensure lifetime and performance. For example sintered bush bearings deliver lubrication through capillary action between rotating components. They require less maintenance and are relatively low cost for a variety of applications. However, they are less resistant to high speeds and loads, so more robust designs would be preferable.

Design consultancy

Mini motor tribological factors are vital considerations for the performance and lifetime of applications driven by mini motors. Design, materials and lubrication will minimise the effects of friction and wear, and a thorough understanding of the physics involved is important to optimise mini motor specification. Motor design and selection will not only enable the most effective result, but will also minimise long-term costs in replacement and maintenance.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Understanding standby, prime and continuous gensets
WEG Africa Electrical switching & drive systems & components
The increasing reliance of South African businesses on generator sets to mitigate power disruptions highlights a crucial need for proper selection based on specific operational demands. Despite their growing usage, there is still widespread confusion about how to choose the appropriate genset, often leading to inefficient and costly decisions.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
Local range of planetary units
SEW-EURODRIVE Electrical switching & drive systems & components
s SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Innovative five-axis laser precession scanner
Electrical switching & drive systems & components
Motion control specialist, Aerotech has launched the AGV5D, an innovative five-axis laser precession scanner specially developed for laser micromachining. This makes it possible to create high-precision bores, contoured slots and other complex geometries with dimensional tolerances in the sub-micrometre range.

Read more...
A leap forward in electrohydrostatic pump technology
Customized Motion Controls Electrical switching & drive systems & components
Moog has launched the EPU-G, the latest addition to its Electrohydrostatic Pump Unit portfolio.

Read more...
Minetruck with electric drivetrain combines power and innovation
Electrical switching & drive systems & components
The new Minetruck MT66 S eDrive is the first of Epiroc’s large-capacity mine trucks to feature the latest generation electric drivetrain. Along with an upgraded and powerful diesel engine, the hauler combines the cost-effectiveness of a traditional mine truck with the productivity of an electric one, without requiring changes to a mine’s infrastructure.

Read more...
Modular hydraulic control blocks for brake actuation
Electrical switching & drive systems & components
Electrohydraulic brake release valves are exposed to extreme loads, and can become uncontrollable in the event of a power failure. The experts at WEBER-HYDRAULIK GMBH have developed a practical, modular solution that ensures the safety of construction machinery, and is also suitable for a wide range of other vehicles with hydrostatic drive systems.

Read more...
Modular assembly platform for clean manufacturing
Beckhoff Automation Electrical switching & drive systems & components
JR Automation delivers custom automated solutions for numerous industries. It has done this through its scalable, modular automation platform, FlexChassis, which speeds up time to market while cutting costs. The company chose the XTS linear transport system from Beckhoff because of its speed, and modular design that allows for multiple configurations.

Read more...