Editor's Choice


The ‘P’ in predictive maintenance represents progress, not pain

First Quarter 2022 Editor's Choice Pneumatic systems & components

Predictive maintenance has become a buzzword in recent decades as factories drive down the total cost of ownership of capital equipment by preventing failures and downtime in a ‘just-in-time’ way. According to an IndustryWeek report, unplanned downtime costs industrial manufacturers an estimated $50 billion annually. Equipment failure is behind 42% of this unplanned downtime. It will be hard to challenge the need for an effective maintenance regime. It is often assumed that implementing a predictive maintenance strategy entails a complete overhaul of operations. In reality a few small steps can make a huge difference to machine uptime and overall equipment effectiveness.

There are three main types of maintenance: reactive, preventative and predictive. But how do you make sense of these terms? Human health can provide an analogy to machine health. Take diabetes, for example. Reactive maintenance would be implemented after a doctor has confirmed a patient’s diabetes. The patient focuses on measures to keep the disease under control. In contrast, preventative maintenance would treat the disease before any symptoms, through a healthy lifestyle and eating plan. Predictive maintenance would come into play when someone is pre-diabetic, but still within a safe limit. Regular monitoring of blood glucose would reveal whether the situation is stable or deteriorating and help identify whether more interventions are required.

Production engineers want to increase machine reliability by minimising the possibility of costly and disruptive downtime. There are many factors to consider, not least the cost of implementation and management in comparison with the number of downtime events. The key word is data. Implementing a predictive maintenance programme requires three basic things: data, time and analysis. Data − the modern version of a crystal ball − is an ally to increase machine reliability. Extensive knowledge is required as to why an asset is beginning to fail; and partnering with a reputable automation specialist can pay significant dividends.

Over the last year alone, SMC has performed 25 energy audits at large food and packaging and motor manufacturer sites. These audits carefully analyse the air wasted through leaks that have directly forced customers to run compressors harder or at higher pressures, costing them more in valuable electricity. The volume of air required per machine or line cycle is also analysed to determine if localised high pressure boosters could provide the same solution. This has allowed several of these factories to drop the nominal target pressure from their main line compressors. The audits provide simple suggested solutions whether they be reactive, remedial repairs or preparing the site with truly predictive data feedback devices.

A case in point is a pneumatic cylinder, the workhorse of many industrial machines. Among the common failure modes for pneumatic actuators is a leaking piston seal. These faults can be difficult to detect and lead to a loss of pressure. An operating pressure loss of just 0,1 MPa can negatively affect the theoretical force output of a cylinder with a 32 mm diameter piston by 17%. A further side-effect of this is an increase in air consumption in order to compensate for the leak.

Adopting a predictive maintenance strategy entails little more than fitting a pressure sensor at key areas and monitoring pressure against time. SMC’s high precision ISE20 digital pressure switch with easy setting modes and IO-Link offers a solution here. Any component changes soon become apparent due to abnormal performance curves in comparison with those ‘learned’ for normal operation. With machine learning and real-time analysis, it is possible to implement timely predictive maintenance before incurring any major performance losses or downtime.

Installing a network of flow sensors to continuously track the usage of compressed air and thereby any leaks or possible malfunctions over the pneumatic circuit is good practice. You can smartly automate your monitoring process with SMC’s PF3A*H digital flow switch, an all-in-one solution for large flow that detects leaks and keeps air consumption in check. Another option is the ALDS Series (Automatic Leak Detection System), which allows you to determine machine leakages with exact leak location and value.

As well as pressure and sensors, proximity sensors can be used to calculate cylinder speed and help detect other possible mechanical issues. Machines can learn, predict and prevent, but they still require human input to define suitable variables to monitor and set acceptable/unacceptable limits. In addition, humans must select which machine components to fit with sensors, as not all will be critical to uptime and productivity. Budgets, time and staff availability also come into the equation.

Another potential factor here involves reliability-based maintenance. Designing from origin means identifying reductions in unnecessary maintenance costs based on failure mode effects analysis. In essence, this approach focuses on the different failures that could occur and their potential consequences. SMC makes this task easy by hosting configurator tools on its website for pneumatic airlines, valve manifolds and cylinders, helping to optimise product selection and performance for the application in hand.

With these thoughts in mind, partnering with a proven technology specialist is a prudent strategy. For instance, pooling SMC’s knowledge of automation components with the individual machine knowledge of a customer makes for a powerful and resourceful combination.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Selection of two-port valves: an open and shut case
SMC Corporation South Africa News & events
Little consideration is generally given to 2-port valves because they are often perceived as simple devices that only open and close to control downstream fluid supply. Although this is mechanically true, choosing the optimal 2-port valve for your application can make a big difference, saving space, weight and energy consumption.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...