Editor's Choice


How smart pneumatics enhances machine safety and operation

First Quarter 2022 Editor's Choice Pneumatic systems & components

The Industrial Internet-of-Things and the digital transformation it has empowered have already proven their many benefits. One that deserves a closer look is how smart pneumatic devices can improve machine safety and operation. Pneumatic components are already designed with safety features that protect operators and equipment, yet smart pneumatic technology offers even more capabilities. Machine monitoring and measurement allow operators to understand more about equipment operation and performance than ever before. By gathering appropriate data, operators can make informed decisions that prevent injuries as well as equipment failures and create safer manufacturing spaces.

Pneumatics and safety

Machine manufacturers and end-users have always used pneumatic devices to provide cost-effective and efficient motion and actuation on a wide range of systems; pneumatics has also provided original equipment manufacturers and end-users with reliable, lightweight and proven technology to improve the safety of their equipment. Pneumatics can be used to implement many important safety functions, such as ensuring a limited speed, reducing pressure and force, safely releasing energy and guaranteeing a safe direction of travel or blocking a movement.

Machine builders in every region of the globe are seeking to leverage a variety of alternative technologies to improve machine safety − and pneumatic motion is a big part of that trend. Meanwhile, the globalisation of the machinery marketplace means that machines must satisfy various safety regulations. As an example, in the European Union, the Machinery Directive (2006/42/EC) must be followed by law when a piece of machinery is put into service. The best way to satisfy the law is to follow the many global standards available.

The predominant regulatory standard that affects pneumatic technology in machine automation is ISO 13849, which outlines safety requirements and provides guidance on the principles for the design and integration of safety-related parts of control systems.

These regulations exist to help reduce the risk of personal injuries and help prevent damage to equipment. But, with regards to safety, companies have a huge financial stake as well. The US centres for Disease Control and Prevention (CDC) and the National Safety Council (NSC) estimate the direct costs of a fatal injury to be a million dollars or more, with indirect costs − like workplace disruptions, loss of productivity, worker replacement, training, increased insurance premiums and legal fees − running two to 17 times more.

Therefore, whether machines are made in Europe and shipped to the US or vice versa, they need to follow safety standards. Pneumatic technology for safety helps machine builders meet the regulatory requirements.

The new factor: IIoT

The emergence of the IIoT and related trends like Industry 4.0 are creating additional opportunities for pneumatics to enhance its contributions to safety.

IIoT is all about gathering data, opening new opportunities for tracking, measuring and reacting, thus gathering data that leads to information-driven outcomes. These additional information-gathering capabilities offer new opportunities to enhance functional safety in manufacturing. One of the benefits of the IIoT revolution is a more predictable state of manufacturing, which leads not only to manufacturing optimisation but also enhanced safety algorithms.

One of the key developments associated with the emergence of IIoT and Industry 4.0 is the expanding use of sensors throughout automation systems, including pneumatic components. Sensor technology has become smarter, smaller, more lightweight and easier to integrate into a range of pneumatic components, allowing measurement of temperatures, pressures, flow rates, cycle times and valve response rate. Even the simplest devices may at some point be providing some crucial information. As a result, end-users will be able to know much more about the performance of pneumatics in their machines and devices.

Data alone is not enough

The more intelligent a system is, the more data analytics the system will be able to offer. And the more systems a factory has, the more data it will produce. To keep all that data from becoming overwhelming, equipment manufacturers and end users need to determine exactly what information is needed to ensure the safe and effective operation of their equipment.

In a pneumatic system, it is not unusual for a machine to have 15 manifolds with 10 or more valves on every manifold. If one simply monitors how many times the valves have shifted, the generated data would not only be massive but also have limited usefulness.

An alternative strategy is to monitor the response time of a valve, a parameter that is also used to satisfy the requirements of the ISO 13849 functional safety standard. In the above example, the simple act of monitoring the number of times that the valves shift could not exclusively be used to predict the impact to the safety of the system. For instance, the action of an automobile manufacturer boosting production on an assembly line from 60 to 65 vehicles per hour would also impact the system cycle time and thus affect the valve shift cycles, but not the valve’s response time.

Therefore, the manufacturer’s goal should be to develop enhanced safety outcomes based on appropriate data, which, when correctly analysed, leads to application-pertinent information. Simply generating a large amount of data, without a plan of how to use it and understand what it’s measuring, is not very useful.

Mission time: A critical parameter

Mission time, as defined by ISO 13849 specifications and calculated using the cycle rate, hours of operation, days of operation and component reliability, is a critical parameter for measuring machine safety performance. It assures end users that safety-related components are going to function safely for an established amount of time, after which they must be replaced, regardless of whether they are still functional.

Unlike useful life, mission time is a design decision that is documented in a safety requirement specification and the validation portion of ISO 13849 and IEC 62061 specifications. While mission time is important, new IIoT capabilities make other information available that will also be helpful from a safety standpoint. For example, suppose a machine had a safety light curtain controlling a valve and the valve response time changed from 30 milliseconds to 50 or even 70 milliseconds before the device reached its mission time replacement cycle. This scenario could pose a severe safety hazard, because it would allow an operator to get much further into the motion area of a machine before a safety response event could be generated. That decline in the valve response time (and the corresponding alert response time) is the kind of useful information that new IIoT capabilities would proactively capture and report.

Today, to keep systems and machinery safe, a scheduled maintenance plan must be in place and adhered to. It is this schedule that triggers the replacement or refurbishment of functioning safety-rated components in the machine or system. Autonomously monitoring the valve’s response changes over time makes the maintenance plan more in-depth and predictive, thus alleviating the need for scheduled maintenance altogether and still assuring that mission time is met. This ‘monitoring’ of pertinent safety parameter changes can be done using IIoT principles and devices.

Whether it’s standard operational data or safety-related IIoT data, the goal is to give actionable information. Different industries and production operations will have to determine what data is most relevant and how to analyse and apply that data to improve their operations and safety systems.

IIoT is here, now

Edge gateways are devices that translate data used by control applications into an IIoT format that can be used to connect to cloud systems. However, they can also be used for analysing the data that is sent to them and thus are also considered to be edge-computing appliances.

There are already some pneumatics products with edge gateway capabilities built into their electronics platform. Many manufacturers are developing Industrial IoT gateways that analyse various sensor signals and use the results to generate informative process information. To monitor the wear of a shock absorber in a pneumatic cylinder, for example, the edge gateway would analyse the end-stroke sensor signals to evaluate the cushioning efficacy. The system can intelligently route this information to the right people without the use of the machine controller. This concept alleviates the need to modify the controller program that minimises the risk of machine downtime and has the potential to substantially lower operating costs by identifying failing components before they stop and cause unscheduled downtime.

System performance data can be gathered with existing components and sensors and analysed to provide pertinent information of the safety device or system, as well. For example, it is possible to track mission time by utilising existing sensors that are already on the components. However, for more granular data, component manufacturers will probably add more sensors eventually – either externally or internally to the devices or systems. Ultimately, there’s potential to monitor every level of a pneumatic system downstream of the compressor, including the safety-related parts.

Summary

One of the major benefits of the IIoT revolution is a more optimal and predictable state of manufacturing, but it can also be used to drive enhanced safety outcomes and safer manufacturing systems.

As a proven automation technology, pneumatics already offers many safety benefits. With the addition of appropriate sensors, analytics and connectivity options anticipated in IIoT applications, pneumatic technology adds even more safety enhancements that protect people and machines from harm. The role of component manufacturers is to work with end-users to provide smart devices that deliver actionable, application-pertinent information that allows enhanced safety through information driven outcomes.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...