Electrical switching & drive systems & components


Tailoring the motor to the application through coil selection

Fourth Quarter 2021 Electrical switching & drive systems & components

During the selection of a miniature DC motor, the design engineer will consider the dimensions needed to fit the desired space as well as the working point (the torque and speed at which the motor is required to operate). There will also often be a choice of coils. Valentin Raschke, application engineer at Portescap, examines how choice of coil impacts on the motor specification, making it possible to adapt the motor to the available power source to create the most efficient solution for a given application.

Regardless of its construction, a DC motor is performing the same job – converting electrical energy into mechanical energy. For any given application, there might be a whole range of motors available that could do the job, with the designer making the eventual selection based on parameters such as size, weight, efficiency, torque and speed requirements, lifespan and cost.

Taking those factors into consideration might lead the designer to a single, best choice of motor. But there might also be the opportunity to tweak motor design – and therefore boost efficiency – by selection of the most appropriate coil.

So how does the coil impact on our design considerations? The torque produced by the motor will be determined by the current consumed and the torque constant. The torque constant, in turn, is defined by the radius of the coil, the magnetic flux density, the length of the motor and the number of turns of the coil. The first three of these parameters are fixed by the chosen motor and its diameter. Adjusting the number of turns of the coil, though, can impact the torque constant for a given size of motor.

This is important because the no-load speed of the motor is defined by the available supply voltage and the torque constant of the coil. We might find a choice of several coils that meet our needs, but with different supply voltages and different current requirements. The coil is therefore chosen to adapt the motor to the available power supply.

Choice of coil also impacts on the motor efficiency in the application. Look, for example, at ironless DC motors: these are renowned for their high efficiency. Aside from friction, losses tend to be heat generated by the current running through the copper wire of the coil. These losses are proportional to the coil resistance multiplied by the square of the current. Motor efficiency is higher at lower torque due to the lower motor current, so here again choice of coil can have a big impact.

Consider an application requiring continuous operation at a fixed speed and torque – perhaps a medical infusion pump – then we might find a number of coils in the motor manufacturer’s catalogue that would seem to meet our needs at the required working point and power. If the available power supply for our application is a voltage source, supplying a fixed voltage, that will narrow down the choice of coils further and the designer can select the one that is the best fit to optimise the application. With a voltage source, it is typical for a reduced number of options of coils and there may only be one option for a given application.

The number of options tends to be greater if a current source – a given maximum current across a range of supply voltages – is available instead of a voltage source to achieve the same working point. Now we might have a higher number of possible coils to meet the application requirement and the design engineer can really begin to tailor the application.

If total efficiency is the prime consideration, that might lead us in one direction. In other applications, the coil with the lowest current consumption might provide the best choice, as it will result in a longer lifetime of the commutation system and increase the number of cycles with a single battery charge for battery powered applications.

The availability of a number of standard coils can take us a long way towards tailoring the motor to the application, but there may be instances where the design engineer needs something even more optimised. In a critical application where cost pressures are less of a consideration than ultimate performance and where the design engineer does not have the freedom to adapt the power supply for a standard coil, then a custom designed coil could provide the best solution.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New generation low power frequency inverters
Bearing Man Group T/A BMG Electrical switching & drive systems & components
New to BMG’s electromechanical range are energy-efficient Synergy PI150 series frequency inverters, which have been designed for efficient use in many applications.

Read more...
Planar motor system for quality assurance
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
Achieving the shortest possible inspection times, even when working with different components, is paramount when it comes to series production. This is precisely what special machine builder, stoba Sondermaschinen set out to achieve with its InspectorONE optical inspection system, which is based on deep learning and features the Beckhoff XPlanar planar motor system at the conveyor system core.

Read more...
Siemens elevates automotive and aerospace simulation
Siemens South Africa Electrical switching & drive systems & components
Siemens Digital Industries Software has announced the latest update to its Simcenter portfolio, delivering advancements in aerostructure analysis, electric motor design, gear optimisation and smart virtual sensing. These enhancements are designed to streamline workflows, accelerate certification and provide deeper insights into system performance.

Read more...
Turbomachinery controls: the call of duty
Schneider Electric South Africa Electrical switching & drive systems & components
There’s a lot to be said about the unsung heroes of this world; those men, women and machines that deliver such important functions, often overlooked and recognised. One such machine is turbomachinery, and while the name does sound quite obvious to the layman, its rich history and daily functions are not.

Read more...
More movement in the market
Electrical switching & drive systems & components
Aerotech aims to revolutionise the market for precision motion and machine controls with an intuitive control platform.

Read more...
Motion technology for all types of automation
Bearing Man Group T/A BMG News & events Electrical switching & drive systems & components
BMG has been appointed by The Timken Company as a distributor in southern Africa for the Rollon linear motion guidance system.

Read more...
Servo motor series for explosive environments with expanded certification
Parker Hannifin - Sales Company South Africa Electrical switching & drive systems & components
Parker Hannifin’s ongoing commitment to safety and performance in hazardous environments is evident in the new certifications and product improvements for its EY and EX servo motor series.

Read more...
The world’s most powerful worm
Editor's Choice Electrical switching & drive systems & components
Geothermal energy from the natural heat of the Earth is an inexhaustible resource, yet the growth of the global geothermal power sector lags behind other renewable energies. Now Swiss startup, Borobotics is hoping to speed this up with its innovative new electric-powered geothermal drilling robot, which can be used to fast-track and lower the cost of heat pump installations in confined spaces.

Read more...
The impact of gearless mill drive technology on CO2 emissions
Electrical switching & drive systems & components
ABB has released an in-depth white paper detailing the vital role that gearless grinding technologies can play in driving productivity in mining while simultaneously reducing their carbon footprint.

Read more...
Revolutionising TIG welding for aerospace manufacturing
Electrical switching & drive systems & components
Yaskawa Southern Africa has partnered with Aerosud Aviation, a leading aerospace manufacturer, to implement a cutting-edge robotic TIG welding solution tailored to the exacting demands of aerospace production.

Read more...