Hydraulic systems & components


Designing an energy efficient compressed air system

1st Quarter 2011 Hydraulic systems & components

Steam and compressed air are often the most abused and expensive forms of power in a factory. Often compressor housing is designed with undersized piping and air treatment equipment which does not use electricity efficiently.

A pressure drop of 1 bar in an air system is equal to a wasted power cost of R23 777 per annum when a 185 kW air compressor is continuously operated at 28 m³/min (assuming R0,38/kWh). For an energy efficient compressed air system, design engineers might consider the following pointers:

* Before buying a new compressor plant, conduct a professional compressed air audit to determine the plant’s actual air consumption and prevent over or under sizing of the compressor and dryer plant.

* Log air leaks and implement an action plan to reduce them to an acceptable level.

* Select air compressors which satisfy the plant’s volume and quality needs. Variable speed drives may be considered.

* Select an energy efficient air dryer that provides for the dew point needs of the plant with minimal air pressure losses. Over specification will lead to increased long-term running costs. Decentralised air drying, with different types of dryers might be considered to reduce energy wastage.

* If dew points below -40°C are required, consider dew point controllers for dryers with capacities greater than 14 m³/min. Above 21 m³/min, heat regenerative dryers should be mandatory. These have lower purge air requirements and the ensuing power savings are enormous. Recovery time for the extra capital expenditure is often under one year, with continuous payback for the life of the dryer.

* Use power efficient OEM filter cartridges with a pleated construction. These normally have a lower initial Δp and will inflict a lower pressure loss while providing longer service intervals compared to a simple wound cartridge.

* To reduce air wastage when condensates are discharged, use efficient capacitance type intelligent condensate drains for dryers, filters and receivers.

* Design the compressor house with cognisance given to ventilation and efficient re-use of waste heat from the compressors. A 1°C rise in the inlet temperature to the compressor will decrease the compressor’s output capacity by 1%.

* Split the compressor house power supplies to minimise compressed air disruption in the event of a transformer failure.

* Design the compressor house air main piping to achieve an air pipeline speed of 3 m/sec. This will ensure that compressors do not offload prematurely due to pipe line pressure restrictions. It is common to find air compressors running in idle mode, and not able to deliver air to the plant due to undersized and restrictive compressor house piping.

* Design the ring main air distribution system to achieve an air speed of less than 6 m/sec and a maximum 0,2 bar system pressure drop. This will ensure that pipe line losses are minimised.

* Install correctly sloping air lines to ensure good condensate drainage.

* Install the necessary isolation valves to provide efficient management of the compressed air mains in the event of future line changes and maintenance.

* Install an oily waste water condensate management system from the compressor and dryer system. A litre of oil can infect a million litres of water.

* Do not use the diameter of the compressor outlet as a guide for pipeline design. Often compressor manufacturers specify very tight discharge ports.

These are just some of the issues to be considered before a design is finalised. Inadequate design and poor selection of equipment can inflict huge hidden costs on a company and can add hundreds of thousands of rand to the energy bill. It pays to avoid pitfalls at the design stage.

For more information contact Allen Cockfield, Artic Driers, +27 (0)11 425 3484, [email protected], www.articdriers.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Hydraulic pumps deliver high flow, convenience and precision
Bearing Man Group T/A BMG Hydraulic systems & components
BMG’s range of high-performance hydraulic electric Enerpac E-pulse pumps is critical to all 700 bar operating hydraulic systems. These portable E-pulse pumps have intelligent auto-cycle functionality and an efficient power-to-weight ratio to ensure dependable operation and high productivity in challenging industrial applications.

Read more...
Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Precision, control and performance in regulators and control valves
Valve & Automation Hydraulic systems & components
Cashco has long been a trusted name in industrial control solutions, offering a broad range of regulators and control valves designed to meet the rigorous demands of various industries.There are two key Cashco product lines, its regulators and the Ranger QCT control valve.

Read more...
New-generation drill rig
Hydraulic systems & components
Epiroc is launching the new-generation PowerROC T35, offering both increased fuel efficiency and faster operations.

Read more...
Electrohydraulic shredding
Hydraulic systems & components
Galvanised parts are among the last big challenges for recycling. ImpulsTec is implementing shockwave or electrohydraulic shredding technology, for the separation of complex material compounds in industrial processes.

Read more...
Revealing the value of filtration
Hydrasales Hydraulic systems & components
The life and reliability of hydraulic systems are greatly affected by the presence of particulate contamination in the lubricant. However, in the face of potential contamination there is hope. The cleaner the fluid, the more reliable the system or process, and the longer the lifespan of its components.

Read more...
Flat face and flat face screw couplings for mining
Hydraulic systems & components
Quick couplings are the critical connectors that keep mining systems running. Within the mining industry, the choice of coupling can significantly impact equipment performance, downtime, and maintenance costs. Stucchi offers flat face and flat face screw couplings that are designed to withstand mining’s unique challenges.

Read more...
Hytec Engineering and Power Team collaborate on water tank project
Hydraulic systems & components
Hytec Engineering and Power Team have collaborated on an innovative water tank project featuring advanced engineering and a specialised synchronised mobile lifting system.

Read more...
Decades of excellence in mobile and industrial hydraulic solutions
Axiom Hydraulics Hydraulic systems & components
For over four decades, Impro Fluidtek has been at the forefront of hydraulic solutions in mobile and industrial applications. This is borne out by four patents and the sale of over three million hydraulic orbital motors across three continents.

Read more...
Acoustic imaging detector for gas leaks and partial discharge
Artic Driers International Hydraulic systems & components
The new SUTO iTEC S532 acoustic imaging detector provides an easy and effective way to locate pressurised air and gas leaks and partial discharge (PD) in industrial high-voltage environments.

Read more...