Editor's Choice


A bionic flying fox

1st Quarter 2019 Editor's Choice Robotics & Mechatronics

The dream of flying is one of the oldest known to humankind. In Festo’s Bionic Learning Network, flying is a recurring theme. In association with universities, institutes and development companies, Festo has for years been developing research platforms where the basic technical principles are derived from nature.

For the BionicFlyingFox, the developers took a close look at the flying fox’s special characteristics and implemented them in an ultra-lightweight flying object. With a wingspan of 228 cm and a body length of 87 cm, it weighs just 580 g. The flying fox belongs to the order Chiroptera – the only mammals that can fly. A particular characteristic is their fine elastic flying membrane. This consists of an epidermis and dermis and stretches from the extended metacarpal and finger bones down to the foot joints. In flight, the animals control the curvature of the flying membrane with their fingers, allowing them to move aerodynamically through the air. The wing kinematics of the BionicFlyingFox are also divided into primaries and secondaries and covered with an elastic membrane. As with the biological model, all the articulation points are on one plane, so the it can control and fold its wings together individually.

The BionicFlyingFox communicates with a motion tracking system that constantly records its position, plans the flight paths and delivers the necessary control commands. An important part of the motion tracking system is two infrared cameras, which rest on a pan-tilt unit. They detect the flying fox by means of four active infrared markers attached to the legs and wing tips. The images from the cameras go to a central master computer. This evaluates the data and externally coordinates the flight like an air traffic controller. The wing movements required to ideally implement the intended courses are calculated by the flying fox itself with the help of its onboard electronics and complex behaviour patterns. It gets the control algorithms from the master computer, where they are automatically learnt and constantly improved. The BionicFlyingFox is thus able to optimise its behaviour during the flights and follow the specified courses more precisely with each circuit flown.

The primaries and secondaries can be activated in any state so that the wings move harmoniously. The primary is coupled to the secondary and follows the latter due to forced kinematics, whereby dead centres in the movement are prevented. A nine gram lightweight brushless DC motor in the body of the flying fox drives these flying kinematics by means of a gear ratio. The folding mechanism on the wings can be individually and infinitely adjusted using two small linear drives.

The BionicFlyingFox can also manage a tight flight radius despite its large wingspan. This is made possible by its ingenious kinematics. It works according to the scissor principle. The primary folds in during the upswing and spreads back out for the powerful downswing. This effect is achieved by a sophisticated mechanism: the angular and rack-and-pinion gear units implement the wing movement synchronously with the help of forced kinematics. Inertial sensors on the on-board electronics monitor the flying manoeuvres and correct with corresponding control signals if needed. Besides the ingenious kinematics, the flying fox also owes its agility to its lightweight design. The same applies in engineering as in nature: the less weight there is to move, the lower the energy consumption.

The artificial flying fox provides important findings for industrial automation. In the factory of the future, intelligence from the central control system will be divided into subsystems and components. Even single workpieces will become intelligent and know what product they are supposed to be made into. They will accordingly be able to communicate with the machines and tell them how they must be processed.

In the case of the BionicFlyingFox, the intelligence is also decentralised: the master computer specifies the flight paths and control commands. During the flight, it compares its calculated intended courses with the actual ones and adjusts these with increasing efficiency using machine learning. It detects how it must control the wings and legs in order to implement the commands from the master computer in an optimal manner.

With the artificial flying fox, Festo has now technically implemented the unique kinematics of Chiroptera and decrypted the last flying behaviour from the animal world within the framework of the Bionic Learning Network.

For more information contact Kershia Beharie, Festo, +27 11 971 5509, [email protected], www.festo.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Planar motor system for quality assurance
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
Achieving the shortest possible inspection times, even when working with different components, is paramount when it comes to series production. This is precisely what special machine builder, stoba Sondermaschinen set out to achieve with its InspectorONE optical inspection system, which is based on deep learning and features the Beckhoff XPlanar planar motor system at the conveyor system core.

Read more...
Robotic solution for adhesive tape application with flexible control
Beckhoff Automation Editor's Choice Robotics & Mechatronics
In industry, even elaborate processes, such as the application of adhesive tape to parts with varying geometries are automated. Innovative Automation has developed a platform with Beckhoff control technology and a remote feeding module, which increases productivity and enables flexible customisation for different requirements.

Read more...
Festo celebrates its centenary
Festo News & events
Creating added customer value through innovation has been the driving force behind the family-owned company from the beginning and remains the key to Festo’s success today. The company’s anniversary is being celebrated with employees, customers and partners worldwide throughout the year.

Read more...
The world’s most powerful worm
Editor's Choice Electrical switching & drive systems & components
Geothermal energy from the natural heat of the Earth is an inexhaustible resource, yet the growth of the global geothermal power sector lags behind other renewable energies. Now Swiss startup, Borobotics is hoping to speed this up with its innovative new electric-powered geothermal drilling robot, which can be used to fast-track and lower the cost of heat pump installations in confined spaces.

Read more...
Problem solving under pressure
Axiom Hydraulics Editor's Choice
The greatest strength of Axiom Hydraulics lies in the company’s ability to solve complex problems and adapt systems to meet unique challenges. This capability stems from two key factors: the diverse experience of its team members, which spans decades across multiple disciplines, and their unwavering dedication to their clients.

Read more...
New AI advisor for robot selection
igus Editor's Choice Robotics & Mechatronics
igus’ new AI chatbot has been added to the online platform RBTX.com. The interactive consultant is designed to enable companies with little previous experience and technological expertise to quickly and reliably put together low-cost automation solutions to becoming more competitive.

Read more...
Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...