Editor's Choice


Freaky hydraulics

2nd Quarter 2017 Editor's Choice Hydraulic systems & components

A big, hairy spider skitters across the floor, its eight long legs moving jerkily and almost robotically and you have the creeps. Spiders give us the willies and our arachnophobia stems from how they move their angular, jointed legs.

A big, hairy spider skitters across the floor, its eight long legs moving jerkily and almost robotically and you have the creeps. Spiders give us the willies and our arachnophobia stems from how they move their angular, jointed legs.

Spiders move in this unnatural, mechanical fashion because arachnid locomotion makes use of a unique hybrid propulsion system involving hydraulics. While they have muscles to flex their spindly limbs inward, they use hydraulic pressure to extend them outward. Almost all other limbed animals have both flexor and extensor muscles, which produce smoother and less unsettling movements.

A spider’s body is filled with a fluid called haemolymph that is similar to blood. Spiders only have two body parts. The first is the fused head and middle, the cephalothorax. The other is the abdomen. All eight spider legs are attached to the cephalothorax. This is important, because outward leg movement is controlled through the cephalothorax.

This regulates the hydraulic movement and haemolymph pressure. The cephalothorax acts like a very finely-tuned, fluid-filled bellows that pushes haemolymph around the body of the spider in a fraction of a second. The flexor muscles in the spider’s legs naturally want to contract, but the hydraulic pressure allows the legs to move outward and resist this contraction.

Parry and Brown measured resting pressures of 6,6 kPa and transient pressures of up to 60 kPa in spider legs. An isolated leg could lift more weight as the pressure inside it was increased, and it was found that the spiders had a special mechanism to seal off a joint and prevent fatal depressurisation when a leg was ruptured.

The lack of flexors and extensors doesn’t prevent spiders from moving efficiently. Hydraulics also gives some spider species impressive jumping abilities. Jumping spiders can leap more than 50 times their own body length by swiftly boosting haemolymph pressure in their third and fourth limbs. When a spider gets ready to jump, it generates excess pressure of up to 60 kPa as the legs extend in order to accommodate more fluid.

Though hydraulics has its advantages, the fact that a spider is basically an hydraulic system gives rise to a critical vulnerability because it relies on hydrostatic pressure in its skeleton. If a spider’s cephalothorax is punctured or it loses a leg, movement will be severely inhibited as the system’s pressure drops sharply. Have you ever seen a dead spider with all eight legs curled up? This is because when the spider dies its legs naturally contract due to the flexor muscles lacking hydrostatic resistance. The hydraulic system has been taken completely offline, while the flexor muscles go into rigor mortis.

Unique and creative designs

There is some great technology that can be developed by mimicking spiders. Spiders can’t grow to be very big because the hydraulics and exoskeleton can’t support large objects. By considering the scaling principles of their hydraulic locomotive system, it may be possible to understand better the design criteria for small hydraulically driven machines or robots.

Different research groups have mimicked the hydraulic mechanism of spider biology to come up with creative designs and solutions for unique problems. Researchers have created a small robot made from a 3D printer that uses hydraulics and pneumatics to jump and crawl. Just like a real spider, the robot’s legs are controlled through hydraulic pumps in the abdomen of the machine. Cheap, lightweight robots could be used to search through rubble and debris in buildings quickly, send robot spiders into hostage situations, scout clogged drains and sewers, go into dangerous mines, or probe caves.

One heartwarming story is about a dad, Ben Ryan who, inspired by the way spiders move their legs, developed some revolutionary prosthetics technology for his young son, whose arm was amputated at 10 days. With the aid of advanced 3D printing techniques, the prosthetic uses fluid power to operate a lightweight grabbing mechanism, with no batteries or small parts which can be a risk to babies. Sacks of fluid in the socket are squashed by the user and this controls the grabbing mechanism. The device is cheaper and faster to produce than any other prosthetic on the market and could allow thousands more very young amputees the opportunity to have a prosthetic fitted in the crucial one to two year window of their life when their body is best able to accept one. Ben is currently looking to the crowdfunding website, Indiegogo to help his fledgling company, Ambionics take the prototype to market to help thousands of babies in the same position.

For more information visit https://tinyurl.com/j7ner3q





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...