Editor's Choice


Gripper modelled on a chameleon’s tongue

2nd Quarter 2016 Editor's Choice Robotics & Mechatronics

Gripping applications have always played a key role in production and Festo is constantly on the lookout for new gripping principles and innovative approaches to production systems in the factory of tomorrow. Using nature as a model, Festo has now developed a gripper whose working principle is derived from the tongue of a chameleon, in cooperation with the Oslo and Akershus University College of Applied Sciences.

The FlexShapeGripper can pick up, gather and set back down several objects with the widest range of shapes in one procedure – without the need for a manual conversion. This is made possible by its water-filled silicone cap, which wraps itself around the items being gripped in a flexible and form-fitting manner.

Nature as a model

In nature, the unique combination of force and form fit demonstrated by the tongue can be observed when the chameleon is on the hunt for insects. Once the chameleon has its prey in its sights, it lets its tongue shoot out like a rubber band. Just before the tip of the tongue reaches the insect it retracts in the middle, whilst the edges continue to move forwards. This allows the tongue to adapt to the shape and size of the prey and firmly enclose it. The prey sticks to the tongue and is pulled in like a fishing line.

A double-acting cylinder

The gripper consists of a double-acting cylinder where one chamber is filled with compressed air whilst the second one is permanently filled with water. This second chamber is fitted with elastic silicone moulding, which models the chameleon’s tongue. The volume of the two chambers is designed so that the deformation of the silicone part is compensated. The piston, which closely separates the two chambers from each other, is fastened with a thin rod on the inside of the silicone cap.

Form-fitting gripping through inversion

During the gripping procedure, a handling system guides the gripper across the object so that it touches the article with its silicone cap. The top pressurised chamber is then vented. The piston moves upwards by means of a spring support and the water-filled silicone part pulls itself inwards. Simultaneously, the handling system guides the gripper further across the object. In doing so, the silicone cap wraps itself around the object to be gripped, which can be of any shape, resulting in a tight form fit. The elastic silicone allows a precise adaptation to a wide range of different geometries. The high static friction of the material generates a strong holding force. Both the holding and the release mechanism are triggered pneumatically. No additional energy is necessary for the holding process.

The yielding quality of the compressible compressed air simplifies the coordination between the handling system and gripper during the grip stage. The force and the deformation of the silicone part can be set very precisely with the aid of a proportional valve. This allows several parts to be gripped at once in a single procedure.

Flexible systems

In future, the FlexShapeGripper could be used in any facility where multiple objects with a range of different shapes are handled at the same time – for example in the service robotics sector, for assembly tasks or when handling small parts. In flexible production plants, it would be possible to handle all kinds of products in one procedure, without having to change the gripper.

In today’s industrial automation environment there are many different grippers, each developed for a special task. If the shape of a workpiece changes, the corresponding gripper must be replaced on the machine or converted, which requires a great deal of effort. In facilities that make a range of products, changeover systems are therefore used, which are fitted with different grippers. In the factory of the future, however, there will be a need for more flexible systems, which are independently adjusted to each product being made. Adaptable grippers like the FlexShapeGripper can assume a significant role in this respect.

Festo’s Bionic Learning Network aims not only to learn from nature, but also to identify good ideas at an early stage and foster them jointly beyond company borders. The project shows how Festo applies principles from nature to its core business of automation and how important the interdisciplinary exchange of information is beyond company borders. The gripper is an outstanding example of the close collaboration by Festo with international universities as part of this network. The full story can be found at http://motioncontrol.co.za/+festo1.

For more information contact Kershia Beharie, Festo, +27 (0)11 971 5509, [email protected], www.festo.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...