Pneumatics on steroids
2nd Quarter 2015
Editor's Choice
Pneumatic systems & components
You see four steel towers rising 100 metres into the sky. Two towers are Space Shot rides that rocket you 80 metres up to the top at an incredible speed; or you start at the top, where the other two Turbo Drop rides thrust you downward at 80 km/h – the choice is yours. This is the Power Tower at Cedar Point in Sandusky, Ohio, which operates using compressed air to launch and drop thrillseekers. Motion Control’s editor spoke to Monty Jasper, corporate vice president for safety and engineering at Cedar Fair, about the engineering behind the Power Tower.
Designed and built by S&S Power, the Power Tower has a unique propulsion system and is part pneumatic cylinder and part shock absorber. Each of the four corners forms a leg which is an independent ride. A vehicle encapsulates the leg and is moved up and down on wheels. The ride is powered by air in large cylinders with an aircraft-grade steel cable connecting an internal piston and the external rider car.
Jasper explains that the ride operates like a flagpole. “Each cable goes over the top of a sheave, and the vehicle is attached to this cable-and-sheave system. At the other end the cable is attached to the piston rod of a pneumatic cylinder and the piston is moved up and down with compressed air,” he says.
There is a ram in the middle of the piston that the cable attaches to. The vehicle is moved up and down by putting air on one side of the ram or the other and forcing the ram to move in that direction, pulling the cable with it and pushing the vehicle in the opposite direction. To propel the vehicle up, air is introduced to the top side of the ram, pushing it down. To launch the vehicle down, air on the bottom side of the ram pushes it in the opposite direction. Compressed air is supplied by four large 150 kW compressors which operate continuously.
The piston and cylinder are both about 25 cm in diameter, so no air can get past the cylinder, and the piston is forced to shoot up through the cylinder. While operating pressure is about 75 kW on the ride, only about 30 kW are required to actually propel the cylinders.
“Everything is redundant. There are four cables on each side of each leg, so the vehicle is supported by four independent cables and any one of these can work alone, so there is a four in one safety factor,” he adds.
Not only does the air cylinder’s piston act as the thrusting force, it can also act as a brake. “The cylinders that form the piston walls have holes drilled in,” Jasper continues. “As the ram moves up to the top, air escapes on the top side of the ram through the holes and is vented to the atmosphere. So you pressurise the bottom side. When the hole is covered up by the ram, the air on the top side of the piston is captured and acts as a brake as the air compresses and begins to act as a resistant force so the cylinder will begin to slow the vehicle and finally bring it to a halt. It then recoils in the opposite direction as if it were a spring so the whole thing moves up and down like a bungee cord.”
On the negative side the Power Tower is a bit of an energy hog. It wasn’t designed with energy efficiency in mind. However, an interesting thing about the control system is that it weighs the vehicle with the passengers and then calculates how much air it will need. This generally varies from 4 to 6 bar. This saves energy and results in performance consistency.
Previously drop rides were smaller and needed mechanical systems to get them moving. “Pneumatics is the only technology that can shoot vehicles earthward at speeds greater than gravity. It’s also clean, reliable and maintenance-free and a quick way to get an exciting launch. It’s amazing to see the ride move – it’s a drop ride on steroids,” Jasper concludes.
For more information visit http://tinyurl.com/km42xjj
Further reading:
Compressed air treatment do’s and don’ts
Artic Driers International
Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.
Read more...
Process control system for the entire plant lifecycle
Siemens South Africa
Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.
Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics
Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.
Read more...
Monitoring the health of systems
SA Gauge
Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.
Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation
Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.
Read more...
Axiom reaches new heights
Axiom Hydraulics
Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.
Read more...
At least 60 million strokes
Horne Technologies
Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.
Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa
Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.
Read more...
Perfect balance for every race
Horne Technologies
Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.
Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.
Read more...