Editor's Choice


Does edge computing have the edge?

Third Quarter 2019 Editor's Choice Other technologies

In the manufacturing arena, people and machines have a symbiotic relationship. They depend upon each other for their performance and for future improvements. People are increasingly making better machines, most recently through the use of affordable and innovative automation solutions based on powerful hardware and software. These advanced machines in turn help people to be more productive, bringing advantages to society by providing more value up the value chain.

Artificial intelligence and the cloud vs the edge

Two technological advances that are playing a vital role in the improvement of machines are cloud computing and edge computing.

Cloud computing is the storage, management and analysis of data that is stored remotely on a server either locally or on the Internet and has become commonplace in a short time. Although it has proved invaluable in many circumstances, is it always the best solution for businesses, and in particular for the production line? Recently another promising alternative has emerged: edge computing.

Edge computing enables data storage, applications and analysis to be carried out at the edge of a machine. Whilst there are various interpretations of what the edge entails, data mining at the edge can be compared to a spinal reflex. Lines and devices are monitored with real-time sensors, and data at the machine level can be processed in microseconds. A machine’s condition can be monitored in real time, but the data volume is limited. Real-time data processing at the edge also enables an immediate response.

Industrial manufacturers need to think carefully before deciding on which of these two options will be the most effective, taking into account the recent arrival of new solutions involving artificial intelligence (AI) and machine learning (ML). Omron has demonstrated how AI can be incorporated into machines by developing Forpheus, the world’s first robot that can play and train people in table tennis.

Forpheus embodies Omron’s three-fold philosophy for innovative automation: integration, interaction and intelligence (specifically AI). The robot uses its cameras and sensors to observe the mood and movements of the player and the ball. It can then rapidly analyse this data to anticipate how the opponent will hit the ball and its trajectory, so that it can then hit the ball back. By assessing how its opponent plays, it can determine their skill level and modify its own play so that its opponent has a challenging game. This is an example of how smart machines could be used to train and assist people in the manufacturing industry, making the most of their potential.

However, although AI offers great potential benefits, care needs to be exercised before incorporating it into industrial applications. All too often, companies are eager to start implementing and using AI without being fully aware of the challenges they could face. So, what are the key issues involved in deploying AI and in determining how AI can improve a production line or a process, and if cloud computing or edge computing should be implemented?

Issue 1: What’s your problem?

The biggest challenge that companies face is that they often don’t know what problem they want to solve. Some of them aren’t measuring any data yet, so even though they might be keen to implement AI, this will prove difficult without the necessary data. The solution is to start collecting and cleaning data first, before even thinking about introducing AI. You can then start trying to obtain information from the data and begin visualising this in a smart way. This is basic data science and will help your company to start realising a range of benefits.

One difficulty here is that a lot of existing data isn’t suitable for analysis, as it is contaminated, duplicated or scattered, or there is key information missing. There is huge potential for the use of new technology, but you can only use it if the data you are gathering is both sufficient and correct (which involves making sure a lot of attributes are right). If you are starting to think about AI, you also need to think in a broader sense about data science and what and how much data you need before coming to a conclusion. Even then, you will need a substantial amount of data if you want to reach the right conclusions.

The next step is to consider implementing AI. You can apply AI at various levels, depending on the problem you want to solve. For instance, if you want to compare the performance of two factories, you can gather the data and put it into the cloud (inside or outside your enterprise), and then you can compare and analyse the data and start to draw conclusions.

At the other end of the spectrum, you might want to analyse the performance of a machine that isn’t meeting your full specifications. This can be difficult in a mass production scenario. For example, a manufacturer who is providing parts for the automotive industry might need to generate 100 000 items per day, that need to be delivered ‘just in time’ to the customer so that they can be built into cars the next day. If it takes two weeks to analyse the quality data to discover that the product isn’t meeting the specifications, this could delay the identification of an issue that could then lead to an extensive product recall.

This is therefore a completely different problem that needs solving. It can’t be solved in the cloud as it can take hours or days to collect the data there and analyse it. Instead, you need a solution that will run in your machine and that can identify a low quality pattern before the 100 000 items are even shipped, or before they are even produced to avoid scrap. This is where edge computing is very useful.

The main challenge remains: what problem do you want to solve? A company with strong, top level management should know the key challenges that it faces and will want to use the most effective tools that will optimise its performance. The problems you face will determine what you need to do. For instance, do you need to look wide, at a lot of data? If you want to compare a large amount of data from 20 factories, this is where AI in the cloud can play a key role. If you need an immediate reaction on a bottling line for example to avoid downtime, you should consider a solution with AI at the edge.

Issue 2: How can you access and make the best use of your data?

The machines within a factory are a potential source of valuable data. But how can users access and analyse the data that a machine could provide? How can a manufacturing plant then make the most effective possible use of this data, especially when introducing AI to enhance its capabilities? The key questions that need to be addressed from the start are:

• The data: Do I have enough data, and if so which data is the most relevant and how will it be used?

• The infrastructure: How much will the infrastructure cost?

• The outcomes: What problem do I really need to solve and what increase in efficiency can be achieved by the use of cloud or edge computing?

Some manufacturing facilities might decide to send all data to the cloud. Large IT companies are promoting the cloud as the solution to everything. However, it is not a complete panacea as it does not show or respond in real time to what is actually happening in the machines. Omron is developing tools to help the human brain to cope with the challenges of what is happening inside the machines, along with details of downwards analysis and pattern recognition.

One of the potential drawbacks of using cloud computing in the factory is that it can be difficult to gain a true picture of the real-time performance of equipment. There is no way of looking inside the machine to see what is happening. However, in edge computing within an industrial manufacturing environment, you can look at the actual process within the machine. Real-time data processing at the edge enables an immediate response to an abnormal situation in a process. With AI at the edge, manufacturers can control complexity and security. To translate information into action, manufacturers need efficient control and monitoring for a more natural, proactive relationship between operator and machine.

With edge computing, the data and the computing resources are located close to the machines. This enables users to gain real-time information about the efficiency of different aspects of their industrial automation system. This means that they can access intelligence within the machine, which in turn enables deep analysis to be carried out.

This information is both scalable and measurable and enables the factory to achieve a significant increase in its overall equipment effectiveness (OEE). Manufacturing companies are increasingly recognising that AI can make a major contribution to their profitability by increasing their OEE, which in turn will lead to greater productivity and lower costs.

In this way, AI can contribute to direct and immediate results because the intelligence is incorporated within the machine rather than being located elsewhere. Users can focus on potential issues in the process using the real-time data from the system and its components.

Omron’s AI Controller has some pre-programmed tools that can help with simple cases of preventative maintenance. Using advanced mathematics, it can detect a problem or a deterioration in part of the equipment before a machine breaks down. However, with more complicated machines and with problems which involve more detailed use of AI, currently you will need specialists with advanced skills, such as data scientists and software engineers, if you want to extract the maximum value from this new technology.

Issue 3: How secure is your data?

In terms of understanding what is happening in machines in a manufacturing environment, cloud computing is a simplistic approach that is often insufficient to meet the needs of the latest technology and machines for several reasons.

Using the cloud can cause problems in terms of security, particularly in relation to compliance with the latest IEC 62243 cybersecurity standards. These are becoming increasingly important in industrial situations, and relate to the security, safety and integrity of the components and systems used within industrial automation programmes.

In contrast, edge computing within the factory provides another level of security, as the data resides within the machines. The whole industrial automation process can be secured using solutions such as intruder detection, video monitoring and access control systems.

Conclusions

In a traditional machine control environment, it has been impossible to programme a machine to recognise micro-second skill patterns in the local data that might be entering it. Potentially all machines have this information but until recently it has been ignored. However, the introduction of AI solutions at the edge inside the machine now provides you with tools that enable you to look at that data. Advances in technology mean that you can have machine control equipment that will process that data and recognise patterns within it.

Although edge computing has some distinct differences from cloud computing in the manufacturing arena, it does not have to be a complete substitution for cloud computing. The two can co-exist as they complement each other in many ways. In some situations, computing might take place in the cloud and then be transferred to edge devices.

Which is the most effective solution for a factory that is starting to use AI – cloud computing or edge computing? Both have a valuable role to play in manufacturing, but it seems clear that in terms of using AI in the production line, edge computing really does appear to have the edge.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...