Editor's Choice


Rotating and turning

4th Quarter 2017 Editor's Choice Robotics & Mechatronics

It’s a time of revolution in industry – automation, digitalisation and Industry 4.0 are just some of the current buzzwords. Robotics is an area that is developing rapidly. Worldwide, annual growth in the installation of industrial robots has been 16% since 2010. The automotive industry continues to dominate, but other sectors are catching up, with use in consumer electronics increasing sharply. As part of this trend, small and medium-sized producers are increasingly investing.

Manufacturers of robots are responding with new models that are more compact, more versatile and last longer. In the past, robots would be replaced when a product generation was phased out, but today they are taking on new tasks and these change more frequently than before. The variety of movements means that the loads on certain components are increasing, particularly the cables. They perform torsion and kinking movements, frequently a mixture of the two, and with different bending radii and torsion angles as well.

Standard cables often unsuitable

Lapp has numerous robust cable types in its standard range, which have performed for years without failing on many robots. However, these standard cables are not always suitable for special applications such as those outlined above, and these applications are on the increase. This is where cables uncompromisingly tailored for a specific use come into play. For cable manufacturers, robotics is the supreme discipline.

The most important difference between robot cables and conventional moving cables is that the former have to withstand both bending and torsion over their entire service life, and in development they are designed fundamentally differently to a power chain cable, for example. There are three key parameters:

Relocated to class 6

Braided conductor class: Robot cables should have at least class 6 conductors, which are designed for continuous movement in line with the standard. Lower classes are less suitable, or totally unsuitable. However, sometimes even braided conductor class 6 is not sufficient. For cables that need to be highly bendable and twistable, Lapp uses braids outside the standard in which the individual wires are just 0,05 mm thick, considerably thinner than the thinnest braided wires covered by the standard.

Torsion angle: A typical value is ±360°/m, which means that a cable can be twisted one full revolution to the left and once to the right about its axis per metre of cable length. This applies to cables without shielding. With shielding the value is typically ±180° or half a turn per metre.

Bending radius: Ideally, this is between four and 7,5 times the outer diameter and thus in some cases lower than for cables that are only subjected to occasional movement. This allows the cables to be coiled in tight radii and in tightly packed hose assemblies.

Three times about its own axis

For some applications, even these properties are not sufficient. For these, Lapp supplies special cables qualified for even higher torsion angles, including a cable for a 3D laser welding robot that allows torsion of over ±1000°/m. This means that the cable can be twisted almost three times about its own axis. This is unique worldwide. For the robot concerned this is definitely not overkill, as the robot arm moves completely freely in three dimensions, twisting several times about its own axis.

The amazing thing is not the sheer extent of the torsion angle, but the fact that this movement is possible over many years with no deterioration in properties. This particular cable is qualified for a minimum of seven million cycles, proved by tests at the Lapp testing centre, which is currently being extended for even more dynamic movement tests. Another special robot cable is certified for over 15 million cycles and, with ±720°/m, allows two turns about its own axis per metre. To create cables capable of handling such extreme loads, the Lapp engineers have to dig deep into their box of tricks. For the cable discussed above with a ±1000°/m torsion angle, for example, braids made of a special copper alloy were used. They retain their minimum electrical resistance even when bent or twisted and after a large number of movement cycles.

Sophisticated construction

These properties can only be achieved with a sophisticated and complex cable construction. There are several factors that can be influenced:

Stranding types: Bundle stranding is usual for robot cables, with the individual conductors combined in one or more bundles. These cables withstand both bending and torsion. If the electrical properties demand it, for example for data or servo cables, cables suitable for use on robots are stranded in pairs.

Core insulation: The insulation of the cores has to be able to withstand several million movement cycles. The best solution is a thermoplastic elastomer, or TPE.

Sliding support: Elements help the components in the cable to move against each other with as little friction as possible. They also act as a filler to make the cable circular. Sliding supports can be stranded plastic fibres that fit into the gaps or voids between the cores. Correct placement of these filler fibres requires a high degree of know-how. Thicker cores are often wrapped in a polytetrafluoroethylene or polyester film fleece wrapping to make it easier for them to slide against one another, particularly under torsion.

Shielding: Tests have shown that under torsion the gaps in the braided shield increase in size over time, because the small wires that make up the braid are pulled apart by the torsion and break over time. This pushes up the contact resistance, which has a detrimental impact on the desired shielding effect. Above half a million torsion cycles, spinning with copper wires is superior to braiding. All the wires point in the same direction and the contact resistance hardly changes over the service life.

Outer sheath: Here, as in many industrial applications, the material of choice here is the very robust polyurethane (PUR).

Thinner is better

Customers are increasingly expressing a demand for the cables to be as space-saving as possible because robots are getting smaller all the time. Increasingly, hybrid cables are being used, containing all kinds of cables such as power, data and signals, and even hoses for pneumatics or the air or protective gas supply. For example, Lapp has developed cables for a welding robot that contains dozens of cores for power, signals and industrial Ethernet in a single sheath. Although some of these hybrid cables are 30 millimetres thick or even more, they take up 30% less space than laying individual cables.

As the requirements for robot cables are so diverse, extensive tests are unavoidable for the manufacturers. However, many cable suppliers also have high minimum order quantities, in some cases several kilometres. In the case of Lapp, sample lengths starting at 100 metres are possible. This enables manufacturers to carry out tests without having to spend a lot of money on the cables.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...