Editor's Choice


Motion control in a ­superconducting electron linear ­accelerator

1st Quarter 2016 Editor's Choice Electrical switching & drive systems & components

An exciting new research facility is currently under construction in Hamburg, Germany. Opening in 2017, the centre will house the European XFEL X-ray laser, an apparatus generating ultra-short X-ray flashes at 27 000 times per second with a brilliance that is a billion times higher than that of current X-ray radiation sources. PC-based control and drive technology from Beckhoff is used to position 91 special high-precision magnet assemblies (undulators) in the underlying electron accelerator.

This X-ray laser will open up completely new fields of research, making possible 3D nanoworld images, deciphering of the atomic details of viruses and cells, and examination of ultra-fast chemical reactions. The facility has a total length of 3,4 km, located mainly in underground tunnels, and will be operated by the independent research organisation, European XFEL. It will be available to research teams from all over the world.

A special feature is the very high repetition rate of 27 000 X-ray flashes per second, facilitated by the superconducting accelerator technology. The flashes have a wavelength of 0,05 to 6 nm, which is so short that even atomic details become visible. With a time duration of less than 100 femtoseconds (1 fs = 1015s), it will even be possible to record the formation of molecules. The laser light properties will enable 3D images at the atomic level.

The starting point for the formation of the X-ray flashes is a 1,7 km long superconducting linear electron accelerator. Electron packets are accelerated to a high energy state, nearly reaching the speed of light. They then speed through undulators – special magnet assemblies which force the particles through a tight slalom course. The electrons radiate synchronously, resulting in ultra-short, intense X-ray flashes which have properties similar to laser light.

An undulator consists of two magnet structures and the distance between determines the wavelength of the laser light. This makes the drive control very demanding. Two servomotors are used to move each of the two magnet structures. The control process has to be highly synchronised in order to avoid a phase shift between the electron and photon bundles and the sequence error must be less than 1 m.

In addition, repeatability of ±1 m must be ensured with respect to the distance of the magnet structures, as this guarantees a high reproducibility of the magnetic field strength and therefore the photon wavelength.

Research associate, Dr Suren Karabekyan, says that after an evaluation phase lasting several months, Beckhoff’s PC-based control and drive technology emerged as the ideal candidate. The high-performance TwinCAT software with integrated motion control functions offers a wealth of benefits. He explains that TwinCAT enables the implementation of a high precision, highly dynamic drive control system which can synchronise several axes exactly.

The undulator sections are each controlled using a C5210 48 cm slide-in industrial PC. They are networked via an EtherCAT ring topology with cable redundancy. Fibre optic cables are used due to the tunnel being several kilometres in length. In addition, the undulator cells in each section are daisy chain linked with each other via Ethernet. In each undulator cell, a C6925 control cabinet PC is used, controlling the two AX5206 servo drives for the four AM3052 servomotors via TwinCAT NC PTP. The IPC also controls three stepper motors – two for a quadrupole mover and one for a phase shifter. The phase shifter motor runs synchronous to the servo drives and corrects the phase of the electron and photos packets between the individual undulator cells. The required I/O data is provided with 35 EtherCAT terminals per undulator cell, digital and analogue I/Os, as well as pulse train, encoder and bridge terminals. Overall, the PC-based control solution comprises three C5210 48 cm slide-in industrial PCs, 91 C6925 control cabinet PCs, 182 AX5206 servo drives, 364 AM3052 servomotors and approximately 3200 EtherCAT terminals.

According to Dr Karabekyan, the result is a compact and powerful control system for the 91 undulator cells. The operations include high-precision synchronisation between the master and slave axes for controlling the magnet structures, and exact synchronisation of the phase shifter with respect to the changes in magnet distances. This high performance control and drive technology is capable of positioning heavy components such as the undulator magnet structures in conjunction with high magnetic forces up to 10 tons, or the quadrupole movers weighing around 60 kg, with m precision.

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Modular assembly platform for clean manufacturing
Beckhoff Automation Electrical switching & drive systems & components
JR Automation delivers custom automated solutions for numerous industries. It has done this through its scalable, modular automation platform, FlexChassis, which speeds up time to market while cutting costs. The company chose the XTS linear transport system from Beckhoff because of its speed, and modular design that allows for multiple configurations.

Read more...
Diving robot cleans up canals
Beckhoff Automation Robotics & Mechatronics
Around 70% of the waste in water sinks to the bottom of the ocean or decomposes into micro and nanoplastics, amounting to tens of millions of tons. So the European Horizon Maelstrom research project put together an international research team and developed the Robotic Seabed Cleaning Platform.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...