Editor's Choice


What is going on in the Milky Way?

Third Quarter 2019 Editor's Choice Electrical switching & drive systems & components

One of the regions we know very little about is the dense part in the centre of the galaxy, where countless stars and gas clouds cluster around a presumed black hole. But a major astronomy project is about to close many knowledge gaps. The project was commissioned by the European Southern Observatory (ESO), which operates some of the world’s most powerful telescopes in the Chilean Atacama Desert. This includes the Very Large Telescope (VLT) with a mirror diameter of 8,2 metres at the Paranal Observatory.

The goal of the project is to equip the VLT with a new instrument to capture optical signals from space. The instrument in question is a spectrograph, which is capable of simultaneously capturing a large number of cosmic objects in the visible and infrared part of the spectrum. Its abbreviated designation gives the project its name: Multi-Object Optical and Near-infrared Spectrograph, MOONS.

With this new technology, MOONS opens up entirely new possibilities in observing space. It captures minute details. The huge lens and mirror of the VLT are pointed at the part of space that is to be observed. Then the ends of exactly 1001 optical fibres in MOONS are aligned to individual objects within this cosmic region. Instead of capturing the entire selected area like a camera, the new instrument focuses the fibres on certain points in the universe. These points are not just photographed, but instead their light is separated by prisms into different wavelengths.

“This method yields much more information than an image,” explains Dr Taylor at the UK Astronomy Technology Centre (UK ATC). “It allows us to calculate its dynamics – the velocity and direction of movement. Because MOONS captures the near-infrared spectrum, we can precisely analyse the redshift that the light from distant objects travelling to us is subjected to.”

One of the objectives of the project is to create a 3D map of the Milky Way, which would allow GPS navigation throughout our galaxy. “The MOONS technology with its unprecedented resolution enables us to look very far, and thus also very far back in time. We will be able to approximate the Big Bang to within a few hundred million years. This will give scientists insights into the universe’s infancy. We will be able to map the Universe to an unprecedented depth,” adds Taylor.

The astronomers aim to target several million objects over a period of about five years. To reach that aim, the 1001 optical fibres of the spectrograph have to be pointed at the cosmic targets quickly and mostly automatically. This is achieved with an equal number of fibre positioning units (FPUs). Each FPU has two stepper motor drive units fitted to reduced backlash spur gearheads. The one in the back moves the central axis of the FPU. Eccentrically mounted on this, the front motor-gearhead drive unit simultaneously moves the fibre tip. The combination of the two axial movements allows each FPU to cover a circular area, within which the fibre can be randomly aligned. This area partially overlaps the areas of adjacent FPUs. That means that every point within the capture zone can be controlled. To meet the challenging requirements in terms of positional repeatability, which is a must to avoid collisions between FPU end tips, the drive system solution has to be extremely precise. To ensure the required precision and to avoid collisions between the FPU tips, the systems must operate with high repeatability. The high quality stepper motors come from Faulhaber Precistep; the zero backlash gearheads from Faulhaber Minimotor contribute to the positioning accuracy.

The high precision and extreme reliability of the components allow the control to be kept simple. Complex electronics and control logics would severely impede the quick and simultaneous control of 1001 units. Thanks to the high quality of the components, precise alignment is achieved by means of simple open loop control. The technology must also be very sturdy and virtually maintenance free in order to perform its tasks without interruption over the planned ten year service life of the system.

Project manager, Dr Alasdair Fairley is already looking beyond such technical concerns. “We are confident that the FPU will remain fully operational for ten years without maintenance,” he concludes.

For more information contact David Horne, Horne Technologies, +27 76 563 2084, [email protected], www.hornet.cc





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...