Editor's Choice


Thrust for hybrid electric flying

First Quarter 2024 Editor's Choice Electrical switching & drive systems & components

Several leading academic institutes in Germany are collaborating on the future of hybrid electric flying. The partners are researching an entirely new propulsion system for medium-range aircraft with up to 35 passengers. They include the Fraunhofer Institutes and the Brandenburg Technical University, under the leadership of Rolls-Royce Germany.

The Clean Sky programmes of the European Union serve as important guidelines for the aviation industry to achieve a significant reduction in nitrogen oxide and noise emissions caused by aviation. A promising technology for this purpose is hybrid electric flying. This is how the partners envision a future hybrid-electric aircraft: a gas turbine generates electrical energy, which charges intermediate battery storage; the aircraft draws its electrical energy from this storage for propulsion.

This technology banks on larger, slower rotating rotors that produce less noise on the ground, creating a significantly smaller noise footprint than conventional propulsion aircraft. The modular structure of the proposed concept also allows for the future use of alternative fuels or entirely new power sources.

By mid-2026, the partners aim to develop manufacturing technologies for hybrid electric propulsion components, qualify existing technologies, and produce prototype components. The focus is on accelerating the development and delivery of prototypes in a sector characterised by high competition. An example is the project’s goal to shorten the lead times significantly from the finished design of a functional prototype to handing it over to the client, reducing them from several months to a few weeks. Other projects involve creating highly flexible production concepts essential for efficient mass production.

Each of the participating Fraunhofer Institutes contributes its specific expertise to provide solutions for the aircraft manufacturer’s later serial development. The planned production technologies, such as additive manufacturing, have not been applied in aircraft construction before. Qualifying them for this industry, with its particularly stringent requirements for quality, reliability and durability, is a challenge that they are now addressing. The high interdisciplinarity of the research projects requires utilising the competencies of multiple institutes, and discussing technical issues synergistically.

One key component involving multiple institutes in its development is the combustion chamber of the gas turbine. In hybrid-electric flying, a gas turbine generates electrical energy, which charges an intermediate battery storage system. The aircraft draws its electrical power from this storage for propulsion.

The Fraunhofer Institute for Machine Tools and Forming Technology has built a reputation for developing cutting-edge manufacturing processes and production systems. It takes on the coordination role among the research partners. Relying on its expertise in forming technology and high-performance machining, it is involved in production processes for the combustion chamber housing via bulk-forming and flexible component machining. Another focus is the arrangement or geometry of the coils in electric drives that enables more efficient operation and higher torque. Fraunhofer specifically supports continuous digital representation in all sections of the development cycle through to serial production.

The Fraunhofer Institute for Material and Beam Technology focuses on laser-based additive manufacturing. In direct energy deposition, metal is melted and subsequently welded where needed. This technology allows components of up to ten metres in length to be printed in any shape or size.

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials further develops a specifically innovative metallic 3D printing process established by the Israeli company, Tritone Technologies. MoldJet combines two manufacturing processes that work alternately for layer-wise component manufacturing. In the first layer, the form is produced as a negative to the component geometry from a wax-like polymer using inkjet print heads. This printed layer of form material is then filled with metal powder paste through a slot nozzle and a squeegee. Due to the layer-wise construction, it is possible to manufacture complex components with undercuts or internal channels, without support structures.

No gas turbine is complete without cast components such as turbine blades or housings. ACCESS is responsible for the development of these cast components. ACCESS refines the latest additive processes to accelerate the complex precision casting route. The goal is to develop tool-free precision casting parts in a shorter time, at lower costs, but with greater design freedom.

Rolls-Royce develops and delivers complex energy and propulsion solutions for safety-critical applications in the air, on water and on land. Rolls-Royce Germany is very active in the aviation industry. It is the only German aircraft engine manufacturer authorised for the development, production and maintenance of modern civil and military turbine engines.

For more information contact Andreas Hemmerle, Fraunhofer Institute for Machine Tools and Forming Technology, +49 371 5397 1372, www.iwu.fraunhofer.de/en




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compressed air treatment do’s and don’ts
Artic Driers International Editor's Choice Pneumatic systems & components
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Process control system for the entire plant lifecycle
Siemens South Africa Editor's Choice
The automation of process plants has been characterised by IT silos for a long time. The high level of IT security required was achieved through strict isolation from the outside world. However, this made unlocking the opportunities for digitalisation very difficult. This is a compelling reason to opt for Simatic PCS neo – Siemens’s completely web-based process control system with state-of-the-art IT security concepts.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Axiom Hydraulics Editor's Choice News & events
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Monitoring the health of systems
SA Gauge Editor's Choice Shaft power components
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Pushing technological boundaries with Festo Electric Automation solutions
Festo South Africa Editor's Choice
In the ever-evolving landscape of Industrial Automation, Festo Electric Automation solutions are at the forefront of a revolution, fundamentally reshaping production paradigms. As a global leader in automation, Festo focuses on intelligent connectivity to reduce costs, save time, and increase efficiency and convenience for customers.

Read more...
Perfect balance for every race
Horne Technologies Editor's Choice Electrical switching & drive systems & components
It goes without saying that success in Formula 1 requires a top driver. However, their chance of achieving a place on the podium depends on the car, which in turn depends on three essential factors: engine, tyres and aerodynamics. To find the optimum balance, the racing teams test models of their bolides in the wind tunnel. At Sauber, the adjustable components are moved on the model and in the test chamber using FAULHABER motors.

Read more...
MeerKAT radio telescope array
Editor's Choice News & events
Leading consulting engineering and infrastructure advisory practice, Zutari is continuing its involvement with the world-leading MeerKAT radio telescope array, where it has played a leading role since the project first broke ground.

Read more...