Electrical switching & drive systems & components


Test rig for new generation rotor blades

First Quarter 2023 Electrical switching & drive systems & components

There’s no mistaking the Blaest headquarters on the shores of the Limfjord in Norway, where rows of white wind turbine blades dominate the horizon. In 2005 the load bearing capacity of the blades was still measured with sandbags. Fast forward to today and the methods have long since been fully digitised, with electromechanical loading systems connecting the blade to the pulling stations fixed to the hall floor. During the three-month test phase, each rotor blade is swung in different directions with great force approximately four million times.

“Our job is to perform fatigue tests on blades so that wind turbine manufacturers can get their prototypes approved,” explains Blaest test engineer, Nicolai Vangsgaard. “The blades should last between 25 and 30 years, and we have to prove that the blade can withstand the theoretical load for which it is designed, as accurately as possible.” To this end, Blaest now uses PC-based control and measurement technology from Beckhoff.


Image copyright: Nicolai Franzen.

Longer blades require faster data acquisition

When the company decided to expand in 2018 with a new, larger test hall, the next logical step was to update the previous control system. This manages communication with the several hundred data acquisition boxes that run along the massive rotor blades and captures the measurement signals from the sensors. Previously a separate cable was required for each individual measurement point, which not only generated significant costs, but also created a tangle of cables that had to be attached to the blade and connected to the control system.

“Our primary goal was to have a more flexible system with a channel count we could expand at any time as the wind turbine blades became longer and stronger,” explains Vangsgaard. This is because the next generation of wind turbine blades will be 100 metres long, as opposed to the 70 to 80 metres found today. This means additional sensors, more measurement channels, and more data to be recorded and processed, with maximum synchronicity and accuracy. The data should also be collected as close as possible to each individual measurement point to avoid the kilometres of cables that previously had to be maintained and replaced. Since Blaest was using its own in-house software tailored to suit each customer, it was essential to come up with an automation system that was both open and easily adaptable.

Customised development for specific requirements

To minimise the complexity of the cabling, Beckhoff developed a decentralised, high-channel EtherCAT P Box for evaluating measurement bridges that capture the signals from the strain gauge sensors on the rotor blades. The I/O box module supports the evaluation of full, half and quarter bridges with 24 bits and sampling rates of up to 10 ksps. Parameters can all be set via EtherCAT using the CoE directory.

The EtherCAT P Box converts the analog sensor signals into digital measured values, in close proximity to the measurement point, which reduces the risk of cable interferences and distorted analog signals. As any test engineer will confirm, the shorter the cable, the more accurate the measurement. Moreover, EtherCAT P reduces the number of lines. “This concept was only possible because EtherCAT is able to handle large networks, while also offering an extremely low real-time update time,” adds Vangsgaard.

During a wind turbine test, around 950 billion measured values are recorded, which corresponds to 7 terabytes of data. The measured values of the 500 load cells are streamed into a database every 4 ms. The old measurement system required more than 10 km of cabling for each test setup. The current system based on EtherCAT P has a cable length of only 1 km and can easily be extended by additional load cells. Vangsgaard puts the savings from the reduced installation effort alone at $4000 per test structure.

“Blaest operates the largest EtherCAT Hot Connect system in the world,” he adds. “The fact that everything is preconfigured makes it easy to make changes to the configuration.” The control cabinets now simply consist of an IPC, a connection for EtherCAT P and a safety module. “Overall, it makes us faster and more adaptable, while also lowering our costs and allowing us to take more accurate measurements. Another huge bonus is that the openness of the system means our test centre is open to all wind turbine manufacturers, so we can adapt to pretty much anything,” he concludes.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New generation low power frequency inverters
Bearing Man Group T/A BMG Electrical switching & drive systems & components
New to BMG’s electromechanical range are energy-efficient Synergy PI150 series frequency inverters, which have been designed for efficient use in many applications.

Read more...
Planar motor system for quality assurance
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
Achieving the shortest possible inspection times, even when working with different components, is paramount when it comes to series production. This is precisely what special machine builder, stoba Sondermaschinen set out to achieve with its InspectorONE optical inspection system, which is based on deep learning and features the Beckhoff XPlanar planar motor system at the conveyor system core.

Read more...
Siemens elevates automotive and aerospace simulation
Siemens South Africa Electrical switching & drive systems & components
Siemens Digital Industries Software has announced the latest update to its Simcenter portfolio, delivering advancements in aerostructure analysis, electric motor design, gear optimisation and smart virtual sensing. These enhancements are designed to streamline workflows, accelerate certification and provide deeper insights into system performance.

Read more...
Turbomachinery controls: the call of duty
Schneider Electric South Africa Electrical switching & drive systems & components
There’s a lot to be said about the unsung heroes of this world; those men, women and machines that deliver such important functions, often overlooked and recognised. One such machine is turbomachinery, and while the name does sound quite obvious to the layman, its rich history and daily functions are not.

Read more...
More movement in the market
Electrical switching & drive systems & components
Aerotech aims to revolutionise the market for precision motion and machine controls with an intuitive control platform.

Read more...
Robotic solution for adhesive tape application with flexible control
Beckhoff Automation Editor's Choice Robotics & Mechatronics
In industry, even elaborate processes, such as the application of adhesive tape to parts with varying geometries are automated. Innovative Automation has developed a platform with Beckhoff control technology and a remote feeding module, which increases productivity and enables flexible customisation for different requirements.

Read more...
Motion technology for all types of automation
Bearing Man Group T/A BMG News & events Electrical switching & drive systems & components
BMG has been appointed by The Timken Company as a distributor in southern Africa for the Rollon linear motion guidance system.

Read more...
Servo motor series for explosive environments with expanded certification
Parker Hannifin - Sales Company South Africa Electrical switching & drive systems & components
Parker Hannifin’s ongoing commitment to safety and performance in hazardous environments is evident in the new certifications and product improvements for its EY and EX servo motor series.

Read more...
The world’s most powerful worm
Editor's Choice Electrical switching & drive systems & components
Geothermal energy from the natural heat of the Earth is an inexhaustible resource, yet the growth of the global geothermal power sector lags behind other renewable energies. Now Swiss startup, Borobotics is hoping to speed this up with its innovative new electric-powered geothermal drilling robot, which can be used to fast-track and lower the cost of heat pump installations in confined spaces.

Read more...
The impact of gearless mill drive technology on CO2 emissions
Electrical switching & drive systems & components
ABB has released an in-depth white paper detailing the vital role that gearless grinding technologies can play in driving productivity in mining while simultaneously reducing their carbon footprint.

Read more...