Electrical switching & drive systems & components


Electromagnetic brakes for DC motors

Second Quarter 2022 Electrical switching & drive systems & components

Mini motor applications utilise DC motor technology because of compactness, low weight, and reliability. Stopping, slowing or holding the position and load of these motors is crucial for many applications, from controlling robotic joints through to automated window shades. This control is achieved by integrating an electromagnetic brake, accurately specified according to the application requirements and parameters of the DC mini motor. Louis Mongin, BLDC product strategic manager at Portescap, explains the technology behind electromagnetic brakes for DC mini motors.

In miniature DC motor applications, electromagnetic brakes are used to hold, stop or slow down a load. Without a brake, a motor would continue to rotate without control, even after cutting its supply of voltage or current; or it would fail to hold position against a competing power. While alternative torque control devices could be used, electromagnetic brakes can combine precision with a compact, reliable, energy-efficient and cost-effective design.

To hold a DC mini motor in position at a specific stopping point across a variety of industrial and medical applications, the general design includes a fixed field coil that acts as an electromagnet to generate torque to brake or hold the load. The coil’s electromagnetism controls an armature that either engages or disengages with a structure. The design of the brake mechanism features a hollow shaft mounted onto the shaft of the DC motor, which gives compact integration.

Brakes are available in a power-on design, which means that the brake is only engaged when current flows in the field coil. This is acceptable when the brake doesn’t have to hold a high load, or if holding torque isn’t required after power-off. Alternatively, with a power-off brake, the brake remains engaged at all times unless current is flowing in the electromagnet, which creates an inherently safer design for some applications.

Spring-set brakes utilise power-off braking and are used to automatically stop and hold a load in the event of a power failure or emergency stop situation. In this design, braking force is applied through a compression spring, and the brake is usually released by manual control. The advantages include repeated braking cycles from full motor speed with no torque fade, and the designs can be customised in aspects such as voltage rating and dynamic friction material according to the spring force requirement. The disadvantage of a spring brake is that it can present backlash, affecting the precision it can offer for dynamic braking or position holding.

Instead, for applications where dynamic stopping and holding a moving load is required, as well as for high cycle rate stopping, a permanent magnet power-off brake should be used. In this design, brakes are engaged magnetically and disengaged electrically, providing safe load holding in power shut-off. When voltage or current is applied to the brake, the coil becomes an electromagnet and produces magnetic lines of flux counteracting those of the permanent magnet. This action releases the armature, creating an air gap and allowing the load shaft to rotate. Increasing voltage or current also enables braking force to be controlled with precision, as opposed to the spring brake’s on/off functionality.

As the permanent magnet brake design includes no moving parts, the brakes can operate at very high speeds. Unlike spring brakes, they don’t allow backlash, because the design includes a fixed connection between the armature, spring and hub. This allows them to be controlled with precision. As heat is generated during dynamic braking, this means that the brake must be correctly sized to deal with friction, load and torque requirements. Permanent magnet brakes require consistent and specific current, meaning that these brake designs should be carefully considered before using them in conditions that could cause current fluctuations, such as high or changing temperatures.

Thanks to the precision control of a permanent magnet brake, they are well suited to use in robotic arm joints. Their zero-backlash capability means they can precisely hold torque and also provide dynamic stopping. An example of a DC mini motor application that requires safety in holding torque is the control of automated window shades. Providing automatic operation, the power-off brake also allows the motor to hold the shade position when power is removed.

Portescap’s engineers regularly integrate DC mini motor braking solutions into bespoke OEM applications. The team ensures exacting sizing and specification, as well as recommending the most effective technology and features for specific requirements. Design is combined with rapid prototyping and testing to ensure safety and precision, before moving the development to volume production.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Understanding standby, prime and continuous gensets
WEG Africa Electrical switching & drive systems & components
The increasing reliance of South African businesses on generator sets to mitigate power disruptions highlights a crucial need for proper selection based on specific operational demands. Despite their growing usage, there is still widespread confusion about how to choose the appropriate genset, often leading to inefficient and costly decisions.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice Electrical switching & drive systems & components
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
Axiom reaches new heights
Axiom Hydraulics Editor's Choice Electrical switching & drive systems & components
When Rula Bulk Handling could not source a cable tensioner large enough for a new cableway, the engineers knew they had to come up with an inventive solution. After discovering that no such tensioner was immediately available, Rula approached Axiom Hydraulics and ifm to assist with building their own.

Read more...
Local range of planetary units
SEW-EURODRIVE Electrical switching & drive systems & components
s SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
At least 60 million strokes
Horne Technologies Editor's Choice Electrical switching & drive systems & components
Designing and constructing compact automation systems is one of the core activities of the Austrian machine manufacturer, STIWA. Its modular LTM-CI system has been optimised for small parts assembly. Linear and rotating micromotors from Faulhaber perform key tasks in these systems.

Read more...
Innovative five-axis laser precession scanner
Electrical switching & drive systems & components
Motion control specialist, Aerotech has launched the AGV5D, an innovative five-axis laser precession scanner specially developed for laser micromachining. This makes it possible to create high-precision bores, contoured slots and other complex geometries with dimensional tolerances in the sub-micrometre range.

Read more...
A leap forward in electrohydrostatic pump technology
Customized Motion Controls Electrical switching & drive systems & components
Moog has launched the EPU-G, the latest addition to its Electrohydrostatic Pump Unit portfolio.

Read more...
Minetruck with electric drivetrain combines power and innovation
Electrical switching & drive systems & components
The new Minetruck MT66 S eDrive is the first of Epiroc’s large-capacity mine trucks to feature the latest generation electric drivetrain. Along with an upgraded and powerful diesel engine, the hauler combines the cost-effectiveness of a traditional mine truck with the productivity of an electric one, without requiring changes to a mine’s infrastructure.

Read more...
Modular hydraulic control blocks for brake actuation
Electrical switching & drive systems & components
Electrohydraulic brake release valves are exposed to extreme loads, and can become uncontrollable in the event of a power failure. The experts at WEBER-HYDRAULIK GMBH have developed a practical, modular solution that ensures the safety of construction machinery, and is also suitable for a wide range of other vehicles with hydrostatic drive systems.

Read more...
Modular assembly platform for clean manufacturing
Beckhoff Automation Electrical switching & drive systems & components
JR Automation delivers custom automated solutions for numerous industries. It has done this through its scalable, modular automation platform, FlexChassis, which speeds up time to market while cutting costs. The company chose the XTS linear transport system from Beckhoff because of its speed, and modular design that allows for multiple configurations.

Read more...